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Abstract 

Molecular Biology research projects produced vast amounts of data, 

part of which has been preserved in a variety of public databases. 

However, a large portion of the data contains a significant number of 

errors and therefore requires careful verification by curators, a painful 

and costly task, before being reliable enough to derive valid 

conclusions from it. On the other hand, research in biomedical 

information retrieval and information extraction are nowadays 

delivering Text Mining solutions that can support curators to improve 

the efficiency of their work to deliver better data resources.  

Over the past decades, automatic text processing systems have 

successfully exploited biomedical scientific literature to reduce the 

researchers’ efforts to keep up to date, but many of these systems still 

rely on domain knowledge that is integrated manually leading to 

unnecessary overheads and restrictions in its use. A more efficient 

approach would acquire the domain knowledge automatically from 

publicly available biological sources, such as BioOntologies, rather 

than using manually inserted domain knowledge. An example of this 

approach is GOAnnotator, a tool that assists the verification of 

uncurated protein annotations.  It provided correct evidence text at 93% 

precision to the curators and thus achieved promising results. 

GOAnnotator was implemented as a web tool that is freely available at 

http://xldb.di.fc.ul.pt/rebil/tools/goa/. 

Keywords: 

Information Retrieval, Information Extraction, BioOntologies, Text 

Mining, BioLiterature, Biomedical Annotation 

http://xldb.di.fc.ul.pt/rebil/tools/goa/


 

 

Introduction 

A large portion of publicly available data provided in biomedical 

databases is still incomplete and incoherent (Devos and Valencia, 

2001). This means that most of the data has to be handled with care and 

further validated by curators before we can use it to automatically draw 

valid conclusions from it. However, biomedical curators are 

overwhelmed by the amount of information that is published every day 

and are unable to verify all the data available. As a consequence, 

curators have verified only a small fraction of the available data. 

Moreover, this fraction tends to be even smaller given that the rate of 

data being produced is higher than the rate of data that curators are able 

to verify. 

In this scenario, tools that could make the curators’ task more 

efficient are much required. Biomedical information retrieval and 

extraction solutions are well established to provide support to curators 

by reducing the amount of information they have to seek manually. 

Such tools automatically identify evidence from the text that 

substantiates the data that curators need to verify. The evidence can, for 

example, be pieces of text published in BioLiterature (a shorter 

designation for the biological and biomedical scientific literature) 

describing experimental results supporting the data. As part of this 

process, it is not mandatory that the tools deliver high accuracy to be 

effective, since it is the task of the curators to verify the evidence given 

by the tool to ensure data quality. The main advantage of integrated 

text mining solutions lies in the fact that curators save time by filtering 

the retrieved evidence texts in comparison to scanning the full amount 

of available information. If the IT solution in addition provides the data 

in conjunction with the evidence supporting the data and if the 

solutions enable the curators to decide on their relevance and accuracy, 

it would surely make the task of curators more effective and efficient. 

A real working scenario is given in the GOA (GO Annotation) 

project. The main objective of GOA is to provide high-quality GO 

(Gene Ontology) annotations to proteins that are kept in the UniProt 

Knowledgebase (Apweiler et al., 2004; Camon et al., 2004; GO-

Consortium, 2004). Manual GO annotation produces high-quality and 

detailed GO term assignments (i.e. high granularity), but tends to be 

slow.  As a result, currently less than 3% of UniProtKb has been 

confirmed by manual curation. For better coverage, the GOA team 

integrates uncurated GO annotations deduced from automatic mappings 

between UniProtKb and other manually curated databases (e.g. 

Enzyme Commission numbers or InterPro domains). Although these 



 

 

assignments have high accuracy, the GOA curators still have to verify 

them by extracting experimental results from peer-reviewed papers, 

which is time-consuming. This motivated the development of 

GOAnnotator, a tool for assisting the GO annotation of UniProtKb 

entries by linking the GO terms present in the uncurated annotations 

with evidence text automatically extracted from the documents linked 

to UniProtKb entries. 

The remainder of this chapter starts by giving an overview on 

relevant research in biomedical information retrieval and extraction and 

exposing which contribution GOAnnotator brings to the current state-

of-the-art. Afterwards, the chapter describes the main concepts of 

GOAnnotator and discusses its outcome and its main limitations, as 

well as proposals how the limitations can be solved in the future. 

Subsequently, the chapter provides insight into how approaches like 

GOAnnotator can change the way curators verify their data in the 

future, making the delivered data more complete and more reliable. For 

achieving this, the chapter will describe the issues that need to be 

addressed leading into valuable future research opportunities. The 

chapter ends by giving an overview of what was discussed and by 

presenting the concluding remarks. 

Background 

A large amount of the information discovered in Molecular Biology 

has been mainly published in BioLiterature. However, analysing and 

identifying information in a large collection of unstructured texts is a 

painful and hard task, even to an expert.  

BioLiterature 

The notion of BioLiterature includes any type of scientific text related 

to Molecular Biology. The text is mainly available in the following 

formats:  

Statement: a short piece of text that is normally a remark or an 

evidence for a fact stored in a database.  

Abstract: a short summary of a scientific document.  

Full-text: the full-text of a scientific document including scattered 

text such as figure labels and footnotes.  

Statements contain more syntactic and semantic errors than abstracts, 

since they are not peer-reviewed, but they are directly linked to the 

facts stored in the databases. The main advantage of using statements 



 

 

or abstracts is the brief and succinct format on which the information is 

expressed. However, usually this brief description is insufficient to 

draw a solid conclusion, since the authors have to skip some important 

details given the text size constraint. These details can only be found in 

the full-text of a document, which contains a complete description of 

the results obtained. For example, important details are sometimes only 

present in figure labels.  

The full-text document contains the complete information for the 

presented research.  Unfortunately, full-text documents are not yet 

readily available, since up to now publishers’ licensing agreements 

restrict access to most of the full-text content. In addition, the formats 

and structures of the full-text document tend to vary according to the 

needs of the journal in where the document has been published leading 

to unnecessary complications in processing the documents. 

Furthermore, processing of full-text documents in comparison to 

document summaries also increases the complexity for text-mining 

solutions, leading to the result that the availability of more information 

is not necessarily all-beneficial to text-mining tools. Some of the 

information may even induce the production of novel errors, for 

example, the value of a fact reported in the Results section has to be 

interpreted differently in comparison to a fact that has been reported in 

the Related Work section. Therefore, the use of full-text will also create 

several problems regarding the quality of information extracted (Shah 

et al., 2004).   

Access to BioLiterature is mainly achieved through the PubMed Web 

portal, which in 2008 delivered more than 17 million
1
 references to 

biomedical documents dating from the 1950s (Wheeler et al., 2003). It 

is the main task of PubMed to make it easier for the general public to 

find scientific results in the BioLiterature. The users can search for 

citations by author name, journal title or keywords. PubMed also 

includes links to full-text documents and other related resources. More 

than 96% of the citations available through PubMed are from 

MEDLINE, a large repository of citations to the BioLiterature indexed 

with NLM's controlled vocabulary, the Medical Subject Headings 

(MeSH). Besides the bibliographic citations, PubMed also provides the 

abstracts of most documents, especially of the newer ones. The articles 

from 1950 through 1965 are in OLDMEDLINE, which contains 

approximately 1.7 million citations (Demsey et al., 2003). These old 

                                                           
1 http://www.nlm.nih.gov/bsd/licensee/baselinestats.html 



 

 

citations do not contain the abstract and certain fields may contain 

outdated or erroneous data. 

MEDLINE was designed to deal with printed documents, but 

nowadays many journals provide the electronic version of their 

documents. Moreover, some of them became Open Access 

Publications, which means that their documents are freely available and 

can be processed and displayed without any restrictions. These 

documents have been exploited by tools, such as Google Scholar2, 

Scirus3 or EBSCO4, which can be used to search and locate scientific 

documents. One of the major free digital archives of life sciences full-

text documents is PMC (PubMed Central), which aims at preserving 

and maintaining access to this new generation of electronic documents. 

Presently, PMC includes over 1.3 million documents. The availability 

of full-text documents offers new opportunities for research to text-

mining tool providers, who were up to now often restricted to analysing 

only the abstracts of scientific documents.  

Text Mining 

An approach to improve the access to the knowledge published in 

BioLiterature is to use Text Mining, which aims at automatically 

retrieving and extracting knowledge from natural language text (Hearst, 

1999). The application of text-mining tools to BioLiterature started just 

a few years ago (Andrade and Bork, 2000). Since then, the interest in 

the topic has been steadily increasing, motivated by the vast amount of 

documents that curators have to read to update biological databases, or 

simply to help researchers keep up with progress in a specific 

area (Couto and Silva, 2006). Thus, Bioinformatics tools are 

increasingly using Text Mining to collect more information about the 

concepts they analyse. Text-mining tools have mainly been used to 

identify:  

• entities, such as genes, proteins and cellular components;  

• relationships, such as protein localisation or protein interactions;  

• events, such as experimental methods used to discover protein 

interactions.  

One of the most important applications of text-mining tools is the 

automatic annotation of genes and proteins. A gene or protein 

annotation consists of a pair composed by the gene or protein and a 

                                                           
2 http://scholar.google.com/ 
3 http://www.scirus.com/ 
4 http://www.epnet.com/ 



 

 

description of its biological role. The biological role is often a concept 

from a BioOntology, which organises and describes biological concepts 

and their relationships. Using a BioOntology to annotate genes or 

proteins avoids ambiguous statements that are domain specific and 

context dependent. The best-known example is the gene ontology (GO) 

that is a well-established structured vocabulary that has been 

successfully designed and applied for gene annotation of different 

species (GO-Consortium, 2004). To understand the activity of a gene 

or protein, it is also important to know the biological entities that 

interact with it. Thus, the annotation of a gene or protein also involves 

identifying interacting chemical substances, drugs, genes and proteins.  

Very early on the text-mining system AbXtract was developed to 

identify keywords from MEDLINE abstracts and to score their 

relevance for a protein family (Andrade and Valencia, 1998). Other 

systems have been developed in recent years to identify GO terms from 

the text: MeKE identified potential GO terms based on sequence 

alignment (Chiang and Yu, 2003) and BioIE uses syntactic 

dependencies to select GO terms from the text (Kim and Park, 2004). 

Furthermore, other approaches use IT solutions where GO terminology 

is applied as a dictionary (Koike et al., 2005; Müller et al., 2004; Pérez 

et al., 2004; Rebholz-Schuhmann et al., 2007). However, none of these 

systems have been integrated into the GOA curation process. 

Moreover, only Perez et al. make use of the hierarchical structure of 

GO to measure the distance between two terms based on the number of 

edges that separate them (path length). However, incorrect annotations 

can be caused by neglecting the semantics of the hierarchical structure 

of GO causes.  For example, if a large number of GO terms from the 

leaves or the deep levels in GO are assigned then the system tends to 

generate over-predictions, and if general GO terms from the top levels 

of the hierarchy are produced then the annotations tend to be useless 

because they are not meaningful.  

The performance of state-of-the-art text-mining tools for automatic 

annotation of genes or proteins is still not acceptable by curators, since 

gene or protein annotation is more subjective and requires more 

expertise than simply finding relevant documents and recognising 

biological entities in texts. To improve their performance, state-of-the-

art text-mining tools use domain knowledge manually inserted by 

curators (Yeh et al., 2003). This knowledge consists of rules inferred 

from patterns identified in the text, or on predefined sets of previously 

annotated texts. The integration of domain knowledge improves overall 

the precision of predictions, but it cannot be easily extended to work on 



 

 

other domains and demands an extra effort to keep the knowledge 

updated as BioLiterature evolves.  

The selection of pieces of text that mention a GO term was assessed 

as part of the first BioCreAtIvE competition (Hirschman et al., 2005). 

This competition enabled the assessment of different text mining 

approaches and their ability to assist curators. The system with the best 

precision predicted 41 annotations, but 27 were not correct, which lead 

to a 35% precision (14 out of 41) (Chiang and Yu, 2004). The main 

problem is that the terms denoting GO concepts were never designed to 

support text-mining solutions. Terms in the vocabulary are ambiguous 

and could not be easily deciphered by automatic processing and 

sometimes even by humans (Camon et al., 2005). Without 

improvements to the precision, such automatic extractions are 

unhelpful to curators. This reflects the importance of designing more 

efficient tools to aid in the curation effort.  

GOAnnotator uses publicly available biological data sources as 

domain knowledge for improving the retrieval and extraction tasks 

requiring minimal human intervention, since it avoids the complexities 

of creating rules and patterns covering all possible cases or creating 

training sets that are too specific to be extended to new 

domains (Shatkay and Feldman, 2003). Apart from avoiding direct 

human intervention, automatically collected domain knowledge is 

usually more extensive than manually generated domain knowledge 

and does not become outdated as easily, if the originating public 

databases can be automatically tracked for updates as they evolve. The 

most important data resource used by GOAnnotator is GO. 

Gene Ontology (GO) 

The GO project is one of the long-lasting and successful resource 

building efforts in Molecular Biology constructing a BioOntology of 

broad scope and wide applicability (Bada et al., 2004). GO provides a 

structured controlled vocabulary denoting the diversity of biological 

roles of genes and proteins in a species-independent way (GO-

Consortium, 2004). GO comprised 24,397 distinct terms in September 

2007. Since the activity or function of a protein can be defined at 

different levels, GO is composed of three different aspects: molecular 

function, biological process and cellular component. Each protein has 

elementary molecular functions that normally are independent of the 

environment, such as catalytic or binding activities. Sets of proteins 

interact and are involved in cellular processes, such as metabolism, 



 

 

signal transduction or RNA processing. Proteins can act in different 

cellular localisations, such as the nucleus or membrane.  

  

  
Figure 1: Sub-graph of GO 

GO organises the concepts as a DAG (Directed Acyclic Graph), one for 

each aspect. Each node of the graph represents a concept, and the edges 

represent the links between concepts (see example in Figure 1). Links 

can represent two relationship types: is-a and part-of. The content of 

GO is still evolving dynamically: its content changes every month with 

the publication of a new release. Any user can request modifications to 

GO, which is maintained by a group of curators who add, remove and 

change terms and their relationships in response to modification 

requests. This prevents GO from becoming outdated and from 

providing incorrect information.  



 

 

GOAnnotator 

  
Figure 2: List of documents related with a given protein. The list is 

sorted by the most similar term extracted from each document. The 

curator can use the Extract option to see the extracted terms together 

with the evidence text. By default GOAnnotator uses only the abstract, 

but the curator can use the AddText option to replace or insert text. 

  
Figure 3: GO terms extracted. For each uncurated annotation, 

GOAnnotator shows the similar GO terms extracted from a sentence of 

the selected document. If any of the sentences provides correct 

evidence for the uncurated annotation, or if the evidence supports a GO 

term similar to that present in the uncurated annotation, the curator can 

use the Add option to store the annotation together with the document 

reference, the evidence codes and any comments. 



 

 

GOAnnotator is a tool for assisting the GO annotation of UniProtKb 

entries by linking the GO terms present in the uncurated annotations 

with evidence text automatically extracted from the documents linked 

to UniProtKb entries. Initially, the curator provides a UniProtKb 

accession number to GOAnnotator. GOAnnotator follows the 

bibliographic links found in the UniProtKb database and retrieves the 

documents. Additional documents are retrieved from the GeneRIF 

database or curators can add any other text (Mitchell et al., 2003). 

GOAnnotator prioritizes the documents according to the extracted GO 

terms from the text and their similarity to the GO terms present in the 

protein uncurated annotations (see Figure 2). Any extracted GO term is 

an indication for the topic of the document, which is also taken from 

the UniProtKb entry. The curator uses the topic as a hint to potential 

GO annotation.  

The extraction of GO terms is based on FiGO, a method used for 

the BioCreAtIvE competition (Couto et al., 2005). FiGO receives a 

piece of text and returns the GO terms that were detected in the given 

text. To each selected GO term, FiGO assigns a confidence value that 

represents the terms’ likelihood of being mentioned in the text. The 

confidence value is the ratio of two parameters. The first parameter is 

called local evidence context and is used to measure the likelihood that 

words in the text are part of a given GO term. The second parameter is 

a correction parameter, which increases the confidence value when the 

words detected in the text are infrequent in GO. In BioCreAtIvE, FiGO 

predicted 673 annotations but 615 were not correct, which lead to a 

8.6% precision (58 of 673).  

GO terms are considered to be similar if they are in the same 

lineage or if they share a common parent in the GO hierarchy. To 

calculate a similarity value between two GO terms, we decided to 

implement a semantic similarity measure. Research on Information 

Theory proposed many semantic similarity measures. Some of them 

calculate maximum likelihood estimates for each concept using the 

corpora, and then calculate the similarity between probability 

distributions. Semantic similarity measures take into consideration a 

combination of parameters linked to the structure of an ontology as 

well as information content based on statistical data from corpora 

(Rada et al., 1989). The information content of a concept is inversely 

proportional to its frequency in the corpora. Concepts that are frequent 

in the corpora have low information content. In case of GO the corpora 

used to derive the statistical information is the annotations provided by 

GO, i.e. the information content of a GO term is calculated based on 

the number of proteins annotated to it. For example, GO terms 



 

 

annotated to most of the proteins normally provide little semantic 

information.  

Many semantic similarity measures applied to ontologies have been 

developed. We implemented a measure based on the ratio between the 

information content of the most informative common ancestor and the 

information content of both concepts (Lin, 1998). Recent studies have 

explored on the effectiveness of semantic similarity measures over the 

GO (Couto et al., 2006; Lord et al., 2003; Gaudan et al., 2008). The 

results have shown that GO similarity is correlated with sequence and 

family similarity, i.e., they demonstrated the feasibility of using 

semantic similarity measures in a biological setting.  

GOAnnotator displays a table for each uncurated annotation with 

the GO terms that were extracted from a document and were similar to 

the GO term present in the uncurated annotation (see Figure 3). The 

sentences from which the GO terms were extracted are also displayed. 

Words that have contributed to the extraction of the GO terms are 

highlighted. GOAnnotator gives the curators the opportunity to 

manipulate the confidence and similarity thresholds to modify the 

number of predictions. 

 

GO Aspect GO Terms 

molecular function 54 

biological process 18 

cellular component 6 

total 78 

  

Table 1: Distribution of the GO terms from the selected uncurated 

annotations through the different aspects of GO. 

 

Evidence Evaluation Extracted Annotations 

correct 83 

incorrect 6 

total 89 

  



 

 

Table 2: Evaluation of the evidence text substantiating uncurated 

annotations provided by the GOAnnotator. 

 

GO Terms Extracted Annotations 

exact 65 

same lineage 15 

different lineage 3 

total 83 

  

Table 3: Comparison between the extracted GO terms with correct 

evidence text and the GO terms from the uncurated annotations. 

Results 

The GOA team agreed to curate about 3% proteins from a list of 1,953 

uncurated UniProtKb/SwissProt proteins. As a consequence the 

similarity and confidence thresholds of GOAnnotator were adapted 

until GOAnnotator generated this percentage of predictions. 66 proteins 

were selected at the similarity threshold of 40% and confidence 

threshold of 50%. In other words, GOAnnotator identified evidence 

texts with at least 40% similarity and 50% confidence to selected GO 

terms for all 66 proteins. For 80 uncurated annotations to these 

proteins, GOAnnotator extracted 89 similar annotations and their 

evidence text from 118 MEDLINE abstracts. The 80 uncurated 

annotations included 78 terms from different domains of GO (see 

Table 1). After analyzing the 89 evidence texts, GOA curators found 

that 83 were valid to substantiate 77 distinct uncurated annotations (see 

Table 2), i.e. 93% precision.  

Table 3 shows that 78% (65 out of 83) of the correct evidence texts 

confirmed the uncurated annotations, i.e. the extracted annotation and 

the uncurated annotation contained the same GO identifier. In cases 

where the evidence text was correct, it did not always contain exactly 

any of the known variations of the extracted GO term. In the other 

cases the extracted GO term was similar: in 15 cases the extracted GO 

term was in the same lineage of the GO term in the uncurated 

annotation; in 3 cases the extracted GO term was in a different lineage, 

but both terms were similar (share a parent). In general, we can expect 

GOAnnotator to confirm the uncurated annotation using the findings 



 

 

from the scientific literature, but it is also obvious that GOAnnotator 

can propose new GO terms. 

Examples 

GOAnnotator provided correct evidence for the uncurated annotation 

of the protein “Human Complement factor B precursor” (P00751) with 

the term “complement activation, alternative pathway” (GO:0006957). 

The evidence is the following sentence from the document with the 

PubMed identifier 8225386: “The human complement factor B is a 

centrally important component of the alternative pathway activation of 

the complement system.” 

GOAnnotator provided a correct evidence for the uncurated 

annotation of the protein “U4/U6 small nuclear ribonucleoprotein 

Prp3” (O43395) with the term “nuclear mRNA splicing, via 

spliceosome” (GO:0000398). From the evidence the tool extracted the 

child term “regulation of nuclear mRNA splicing, via spliceosome” 

(GO:0048024). The evidence is the following sentence from the 

document with the PubMed identifier 9328476: “Nuclear RNA splicing 

occurs in an RNA-protein complex, termed the spliceosome.” 

However, this sentence does not provide enough evidence on its own, 

the curator had to analyze other parts of the document to draw a 

conclusion.  

GOAnnotator provided a correct evidence for the uncurated 

annotation of the protein “Agmatinase” (Q9BSE5) with the term 

“agmatinase activity” (GO:0008783). From the evidence the tool 

extracted the term “arginase activity” (GO:0004053) that shares a 

common parent. The evidence was provided by the following sentence 

from the document with the PubMed identifier 11804860: “Residues 

required for binding of Mn(2+) at the active site in bacterial agmatinase 

and other members of the arginase superfamily are fully conserved in 

human agmatinase.” However, the annotation only received a NAS 

(Non-traceable author statement) evidence code, as the sentence does 

not provide direct experimental evidence of arginase activity. Papers 

containing direct experimental evidence for the function/subcellular 

location of a protein are more valuable to GO curators.  

GOAnnotator provided a correct evidence for the uncurated 

annotation of the protein “3’-5’ exonuclease ERI1” (Q8IV48) with the 

term “exonuclease activity” (GO:0004527). The evidence is the 

following sentence from the document with the PubMed identifier 

14536070: “Using RNA affinity purification, we identified a second 

protein, designated 3’hExo, which contains a SAP and a 3’ exonuclease 



 

 

domain and binds the same sequence.” However, the term 

“exonuclease activity” is too high level, and a more precise annotation 

should be “3’-5’ exonuclease activity” (GO:0008408). 

Discussion 

Researchers need more than facts, they need the source from which the 

facts derive (Rebholz-Schuhmann et al., 2005). GOAnnotator provides 

not only facts but also their evidence, since it links existing annotations 

to scientific literature. GOAnnotator uses text-mining methods to 

extract GO terms from scientific papers and provides this information 

together with a GO term from an uncurated annotation. In general, we 

can expect GOAnnotator to confirm the uncurated annotation using the 

findings from the scientific literature, but it is obvious as well that 

GOAnnotator can propose new GO terms. In both cases, the curator 

profits from the integration of both approaches into a single interface. 

By comparing both results, the curator gets convenient support to take 

a decision for a curation item based on the evidence from the different 

data resources. 

GOAnnotator provided correct evidence text at 93% precision, and 

in 78% of these cases the GO term present in the uncurated annotation 

was confirmed. These results were obtained for a small subset of the 

total number of uncurated annotations, but it represents already a 

significant set for curators. Notice that manual GO annotation covers 

less than 3% of UniProtKb. Over time, proteins tend to be annotated 

with more accurate uncurated terms and bibliography. Thus, the 

percentage of uncurated proteins satisfying the 40% similarity and 50% 

confidence thresholds will grow, and therefore make GOAnnotator 

even more effective. 

Sometimes, the displayed sentence from the abstract of a document 

did not contain enough information for the curators to evaluate an 

evidence text with sufficient confidence. Apart from the association 

between a protein and a GO term, the curator needs additional 

information, such as the type of experiments performed and the species 

from which the protein originates. Unfortunately, quite often this 

information is only available in the full text of the scientific 

publication. GOAnnotator can automatically retrieve the abstracts, but 

in the case of the full text the curator has to copy and paste the text into 

the GOAnnotator interface, which only works for a limited number of 

documents. BioRAT solves this problem by retrieving full text 

documents from the Internet (Corney et al., 2004). In addition, the list 

of documents cited in the UniProtKb database was not sufficient for the 



 

 

curation process. In most cases, the curators found additional sources 

of information in PubMed. In the future, GOAnnotator should be able 

to automatically query PubMed using the protein’s names to provide a 

more complete list of documents. 

GOAnnotator ensures high accuracy, since all GO terms that did 

not have similar GO terms in the uncurated annotations were rejected. 

Using this 40% similarity threshold may filter out meaningful potential 

annotations that are not similar to known curated annotations. 

However, without this restriction the results returned by the text mining 

method would contain too much noise to be of any use to curators, as it 

was demonstrated in the BioCreAtIvE competition. GOAnnotator 

meets the GOA team’s need for tools with high precision in preference 

to those with high recall, and explains the strong restriction for the 

similarity of two GO terms: only those that were from the same lineage 

or had a shared parent were accepted. Thus, GOAnnotator not only 

predicted the exact uncurated annotation but also more specific GO 

annotations, which was of strong interest to the curators. MeKE 

selected a significant number of general terms from the GO 

hierarchy (Chiang and Yu, 2003). Others distinguished between gene 

and family names to deal with general terms (Koike et al., 2005). 

GOAnnotator takes advantage of uncurated annotations to avoid 

general terms by extracting only similar terms, i.e. popular proteins 

tend to be annotated to specific terms and therefore GOAnnotator will 

also extract specific annotations to them. 

The applied text-mining method FiGO was designed for 

recognizing terms and not for extracting annotations, i.e. sometimes the 

GO term is correctly extracted but is irrelevant to the actual protein of 

interest. The method also generated mispredictions in the instances 

where all the words of a GO term appeared in disparate locations of a 

sentence or in an unfortunate order. Improvements can result from the 

incorporation of better syntactical analysis into the identification of GO 

terms similar to the techniques used by BioIE (Kim and Park, 2004). 

For example, a reduction of the window size of FiGO or the 

identification of noun phrases can further increase precision. In the 

future, GOAnnotator can also use other type of text-mining methods 

that prove to be more efficient for extracting annotations. 

Future Trends 

Recent publications on the improvements by using information 

retrieval and extraction tools are promising and encourage the research 

community to make an effort to improve their quality and expand their 



 

 

scope. However, the performance of most tools is still highly 

dependent on domain knowledge provided through experts. Integration 

of the expert knowledge is time-consuming and imposes limitations 

whenever services have to be extended to other domains with different 

user requirements. On the other side, the domain of molecular biology 

draws profits from publicly available databases containing a significant 

amount of information. In our opinion, better use of such domain 

knowledge and automatic integration of the data from these biological 

information resources will be the key to develop more efficient tools 

and will thus contribute to their wider acceptance among curators in the 

biological domain. Apart from avoiding direct human intervention, 

automatic collection of domain relevant information is usually more 

comprehensive than any manually generated representation of domain 

knowledge and does not become outdated, since public databases can 

be automatically tracked for updates as they evolve.  

Domain knowledge is only available thanks to the research 

community efforts in developing accurate and valuable data resources 

and by making them publicly available. These data resources are 

continually being updated with more information. However, they are 

still too incomplete, too inconsistent and/or too morpho-syntactically 

inflexible to efficiently be used by automatic tools. For example, GO 

started by adding generic terms and simple relationships to provide a 

complete coverage of the Molecular Biology domain. Thus, the main 

limitation of GO is the lack of specific terms that, for example, 

represent precise biochemical reactions like EC numbers. However, as 

different research communities understand the importance of adding 

their domain knowledge to GO, it will expand its coverage and 

improve its interoperability with other data sources. While 

BioOntologies are traditionally used mainly for annotation purposes, 

their ultimate goal should be to accurately represent the domain 

knowledge so as to allow automated reasoning and support knowledge 

extraction. The establishment of guiding principles, as in OBO, to 

guide the development of new BioOntologies is a step in this direction, 

by promoting formality, enforcing orthogonality, and proposing a 

common syntax that facilitates mapping between BioOntologies. This 

not only improves the quality of individual BioOntologies, but also 

enables a more effective use of them by information retrieval and 

extraction tools. 



 

 

Conclusions 

This document introduced the biomedical information retrieval and 

extraction research topics and how their solutions can help curators to 

improve the effectiveness and efficiency of their tasks. It gives an 

overview on three important aspects of these research topics: 

BioLiterature, Text Mining and BioOntologies. 

The document presented GOAnnotator, a system that automatically 

identifies evidence text in literature for GO annotation of 

UniProtKb/SwissProt proteins. GOAnnotator provided evidence text at 

high precision (93%, 66 sample proteins) taking advantage of existing 

uncurated annotations and the GO hierarchy. GOAnnotator assists the 

curation process by allowing fast verification of uncurated annotations 

from evidence texts, which can also be the source for novel 

annotations. This document discusses the results obtained by 

GOAnnotator pointing out its main limitations. This document ends by 

providing insight into the issues that need to be addressed in this 

research area and represent good future research opportunities. 

The approach presented in this document constitutes a small and 

relatively early contribution to the advance of biomedical information 

retrieval and extraction topics, but the main idea presented here seems 

promising and the results encourage further study. Still, despite all the 

limitations presented here, many relevant biological discoveries in the 

future will certainly result from an efficient exploitation of the existing 

and newly generated data by tools like GOAnnotator.  
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